Extensions 1→N→G→Q→1 with N=C32xC9 and Q=C6

Direct product G=NxQ with N=C32xC9 and Q=C6
dρLabelID
C33xC18486C3^3xC18486,250

Semidirect products G=N:Q with N=C32xC9 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C32xC9):1C6 = S3xC32:C9φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9):1C6486,95
(C32xC9):2C6 = C9xC32:C6φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):2C6486,98
(C32xC9):3C6 = S3xHe3.C3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):3C6486,120
(C32xC9):4C6 = S3xHe3:C3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):4C6486,123
(C32xC9):5C6 = He3:D9φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):5C6486,25
(C32xC9):6C6 = C3xC32:D9φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9):6C6486,94
(C32xC9):7C6 = D9xHe3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):7C6486,99
(C32xC9):8C6 = C3xHe3.S3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):8C6486,119
(C32xC9):9C6 = C3xHe3.2S3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):9C6486,122
(C32xC9):10C6 = C33:D9φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):10C6486,137
(C32xC9):11C6 = He3:3D9φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):11C6486,142
(C32xC9):12C6 = (C32xC9):C6φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):12C6486,151
(C32xC9):13C6 = C32:4D9:C3φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):13C6486,170
(C32xC9):14C6 = He3:C3:3S3φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):14C6486,173
(C32xC9):15C6 = D9:He3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):15C6486,106
(C32xC9):16C6 = C9:He3:2C2φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):16C6486,148
(C32xC9):17C6 = C3wrC3.S3φ: C6/C1C6 ⊆ Aut C32xC9276+(C3^2xC9):17C6486,175
(C32xC9):18C6 = C32xC9:C6φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9):18C6486,224
(C32xC9):19C6 = C3xC33.S3φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9):19C6486,232
(C32xC9):20C6 = C3xHe3.4S3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):20C6486,234
(C32xC9):21C6 = C34.11S3φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):21C6486,244
(C32xC9):22C6 = C9oHe3:3S3φ: C6/C1C6 ⊆ Aut C32xC981(C3^2xC9):22C6486,245
(C32xC9):23C6 = C9:He3:C2φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):23C6486,107
(C32xC9):24C6 = C3xS3x3- 1+2φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9):24C6486,225
(C32xC9):25C6 = S3xC9oHe3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9):25C6486,226
(C32xC9):26C6 = C3:S3x3- 1+2φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9):26C6486,233
(C32xC9):27C6 = C2xHe3:C9φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):27C6486,77
(C32xC9):28C6 = C6xC32:C9φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):28C6486,191
(C32xC9):29C6 = C18xHe3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):29C6486,194
(C32xC9):30C6 = C2xC32.23C33φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):30C6486,199
(C32xC9):31C6 = C6xHe3.C3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):31C6486,211
(C32xC9):32C6 = C6xHe3:C3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):32C6486,212
(C32xC9):33C6 = C2xC9:He3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):33C6486,198
(C32xC9):34C6 = C2xC9.He3φ: C6/C2C3 ⊆ Aut C32xC9543(C3^2xC9):34C6486,214
(C32xC9):35C6 = C3xC6x3- 1+2φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):35C6486,252
(C32xC9):36C6 = C6xC9oHe3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9):36C6486,253
(C32xC9):37C6 = S3xC32xC9φ: C6/C3C2 ⊆ Aut C32xC9162(C3^2xC9):37C6486,221
(C32xC9):38C6 = C3:S3xC3xC9φ: C6/C3C2 ⊆ Aut C32xC954(C3^2xC9):38C6486,228
(C32xC9):39C6 = D9xC33φ: C6/C3C2 ⊆ Aut C32xC9162(C3^2xC9):39C6486,220
(C32xC9):40C6 = C32xC9:S3φ: C6/C3C2 ⊆ Aut C32xC954(C3^2xC9):40C6486,227
(C32xC9):41C6 = C3xC32:4D9φ: C6/C3C2 ⊆ Aut C32xC9162(C3^2xC9):41C6486,240

Non-split extensions G=N.Q with N=C32xC9 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C32xC9).1C6 = C32:C54φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9).1C6486,16
(C32xC9).2C6 = S3xC3.He3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9).2C6486,124
(C32xC9).3C6 = C9:S3:C9φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9).3C6486,3
(C32xC9).4C6 = (C3xC9):C18φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9).4C6486,20
(C32xC9).5C6 = C9:S3:3C9φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9).5C6486,22
(C32xC9).6C6 = D9x3- 1+2φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9).6C6486,101
(C32xC9).7C6 = C3xC9:C18φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9).7C6486,96
(C32xC9).8C6 = D9:3- 1+2φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9).8C6486,108
(C32xC9).9C6 = C9:(S3xC9)φ: C6/C1C6 ⊆ Aut C32xC954(C3^2xC9).9C6486,138
(C32xC9).10C6 = C92:3S3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9).10C6486,139
(C32xC9).11C6 = S3xC9:C9φ: C6/C1C6 ⊆ Aut C32xC9162(C3^2xC9).11C6486,97
(C32xC9).12C6 = S3xC27:C3φ: C6/C1C6 ⊆ Aut C32xC9546(C3^2xC9).12C6486,114
(C32xC9).13C6 = C2xC3.C92φ: C6/C2C3 ⊆ Aut C32xC9486(C3^2xC9).13C6486,62
(C32xC9).14C6 = C2xC32:C27φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).14C6486,72
(C32xC9).15C6 = C2xC32.19He3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).15C6486,74
(C32xC9).16C6 = C2xC32.20He3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).16C6486,75
(C32xC9).17C6 = C2x3- 1+2:C9φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).17C6486,78
(C32xC9).18C6 = C6xC9:C9φ: C6/C2C3 ⊆ Aut C32xC9486(C3^2xC9).18C6486,192
(C32xC9).19C6 = C18x3- 1+2φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).19C6486,195
(C32xC9).20C6 = C2xC33.31C32φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).20C6486,201
(C32xC9).21C6 = C6xC3.He3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).21C6486,213
(C32xC9).22C6 = C2xC9.4He3φ: C6/C2C3 ⊆ Aut C32xC9543(C3^2xC9).22C6486,76
(C32xC9).23C6 = C2xC92:3C3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).23C6486,193
(C32xC9).24C6 = C2xC9:3- 1+2φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).24C6486,200
(C32xC9).25C6 = C6xC27:C3φ: C6/C2C3 ⊆ Aut C32xC9162(C3^2xC9).25C6486,208
(C32xC9).26C6 = S3xC92φ: C6/C3C2 ⊆ Aut C32xC9162(C3^2xC9).26C6486,92
(C32xC9).27C6 = S3xC3xC27φ: C6/C3C2 ⊆ Aut C32xC9162(C3^2xC9).27C6486,112
(C32xC9).28C6 = C3:S3xC27φ: C6/C3C2 ⊆ Aut C32xC9162(C3^2xC9).28C6486,161
(C32xC9).29C6 = D9xC3xC9φ: C6/C3C2 ⊆ Aut C32xC954(C3^2xC9).29C6486,91
(C32xC9).30C6 = C9xC9:S3φ: C6/C3C2 ⊆ Aut C32xC954(C3^2xC9).30C6486,133

׿
x
:
Z
F
o
wr
Q
<